Luminal Ca2+ controls activation of the cardiac ryanodine receptor by ATP

نویسندگان

  • Barbora Tencerová
  • Alexandra Zahradníková
  • Jana Gaburjáková
  • Marta Gaburjáková
چکیده

The synergic effect of luminal Ca(2+), cytosolic Ca(2+), and cytosolic adenosine triphosphate (ATP) on activation of cardiac ryanodine receptor (RYR2) channels was examined in planar lipid bilayers. The dose-response of RYR2 gating activity to ATP was characterized at a diastolic cytosolic Ca(2+) concentration of 100 nM over a range of luminal Ca(2+) concentrations and, vice versa, at a diastolic luminal Ca(2+) concentration of 1 mM over a range of cytosolic Ca(2+) concentrations. Low level of luminal Ca(2+) (1 mM) significantly increased the affinity of the RYR2 channel for ATP but without substantial activation of the channel. Higher levels of luminal Ca(2+) (8-53 mM) markedly amplified the effects of ATP on the RYR2 activity by selectively increasing the maximal RYR2 activation by ATP, without affecting the affinity of the channel to ATP. Near-diastolic cytosolic Ca(2+) levels (<500 nM) greatly amplified the effects of luminal Ca(2+). Fractional inhibition by cytosolic Mg(2+) was not affected by luminal Ca(2+). In models, the effects of luminal and cytosolic Ca(2+) could be explained by modulation of the allosteric effect of ATP on the RYR2 channel. Our results suggest that luminal Ca(2+) ions potentiate the RYR2 gating activity in the presence of ATP predominantly by binding to a luminal site with an apparent affinity in the millimolar range, over which local luminal Ca(2+) likely varies in cardiac myocytes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.

1. In muscle, intracellular calcium concentration, hence skeletal muscle force and cardiac output, is regulated by uptake and release of calcium from the sarcoplasmic reticulum. The ryanodine receptor (RyR) forms the calcium release channel in the sarcoplasmic reticulum. 2. The free [Ca2+] in the sarcoplasmic reticulum regulates the excitability of this store by stimulating the Ca2+ release cha...

متن کامل

Activation of cardiac ryanodine receptors by cardiac glycosides.

This study investigated the effects of cardiac glycosides on single-channel activity of the cardiac sarcoplasmic reticulum (SR) Ca2+ release channels or ryanodine receptor (RyR2) channels and how this action might contribute to their inotropic and/or toxic actions. Heavy SR vesicles isolated from canine left ventricle were fused with artificial planar lipid bilayers to measure single RyR2 chann...

متن کامل

Luminal Ca2+ Regulation of Single Cardiac Ryanodine Receptors: Insights Provided by Calsequestrin and its Mutants

The luminal Ca2+ regulation of cardiac ryanodine receptor (RyR2) was explored at the single channel level. The luminal Ca2+ and Mg2+ sensitivity of single CSQ2-stripped and CSQ2-associated RyR2 channels was defined. Action of wild-type CSQ2 and of two mutant CSQ2s (R33Q and L167H) was also compared. Two luminal Ca2+ regulatory mechanism(s) were identified. One is a RyR2-resident mechanism that ...

متن کامل

Extensive Ca2+ leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca2+ hypersensitivity

Various ryanodine receptor 2 (RyR2) point mutations cause catecholamine-induced polymorphic ventricular tachycardia (CPVT), a life-threatening arrhythmia evoked by diastolic intracellular Ca2+ release dysfunction. These mutations occur in essential regions of RyR2 that regulate Ca2+ release. The molecular dysfunction caused by CPVT-associated RyR2 mutations as well as the functional consequence...

متن کامل

RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release (SOICR).

The cardiac ryanodine receptor (RyR2) governs the release of Ca2+ from the sarcoplasmic reticulum, which initiates muscle contraction. Mutations in RyR2 have been linked to ventricular tachycardia (VT) and sudden death, but the precise molecular mechanism is unclear. It is known that when the sarcoplasmic reticulum store Ca2+ content reaches a critical level, spontaneous Ca2+ release occurs, a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 140  شماره 

صفحات  -

تاریخ انتشار 2012